
DevelopersLet's Try

OCTOBER 2013 | 41

The embedded application is resident twice in the
embedded computer memory: first as a part of the
initrd file system and second, as a running process.
My embedded application is a small one but it needs
a substantial amount of numerical data. I put the data
into files outside the initrd on the embedded computer's
disk. When the application starts, it reads the data from
the files into the memory. If your embedded computer
has enough memory, you can use the presented method
directly. If not, you may want to investigate how to run
an executable located outside the initrd file system. I've
never tried this but I believe it is possible.

So let’s get started with the tutorial.

Configuring the kernel for your
embedded computer
Keep your kernel small, simple and compact. Include only

The initial RAM disk (initrd) is a tool for loading a
��������	
����
���

	
���
����
���
�����	
������

���
�����
����
�����

�
���
���

��
���

	
���

perform some initialisation jobs. A boot loader loads the
Linux kernel and the initrd into the memory, starts the kernel
and informs it about the location of the initrd. The kernel
mounts the initrd
�

��

�������
����
���

	
���
��
���
���
��

its boot sequence. Then the kernel executes the /linuxrc
���

�

��

��
�
�����

�
����
��� /linuxrc
���
����
�
���
������

�

���

����
��
��

�������
���
����
����
���

	
����

Today, there are more modern methods to achieve this
goal–initramfs and cramfs, though I've never tried them.

The idea is to put an embedded application as the
/linuxrc file into the initrd. The system will never go
beyond its initrd stage. No Linux daemons will haunt the
embedded application.

This works fine for me but there is a disadvantage.

Building an Embedded System
Based on the Initial RAM Disk
Here’s a rough tutorial on writing an embedded Linux based system,
using an initial RAM disk.

Developers Let's Try

42 | OCTOBER 2013

those features and drivers that your embedded application is
going to use. Avoid kernel modules. The kernel must have the
support of the initrd (CONFIG_BLK_DEV_INITRD). Have
a look at the maximum allowed size for RAM disks (BLK_
DEV_RAM_SIZE). You may need to increase it.

Preparing the disk of your embedded computer
You should know whether your embedded application
needs to write to the disk. For example, my application
has to write some user preference files from time to time.
If so, you need two primary partitions on the disk. The
first one is bootable and contains some booting files, the
kernel, the initrd, and possibly some data that you put
outside the initrd. If the embedded application has no data
stored outside of the initrd, there is no need to mount the
file system located on the first partition. If needed, your
application has to mount this file system as a read only
one. If your application does not plan to write any data on
the disk, one partition on the disk is sufficient.

���

�����
���

���	

�������
���������
���
��

���

	
���

contain data the embedded application can rewrite. Again,
�����
���
���

	
���
�

����!���	�
"�
�
������
	��
���
�����
��

#����

���������
�������
��
�

�
����!#����
���

	
����
$�%���

���
���
���
#�������
�������
��
�

�
����!���	
���

	
���
������

The method proposed above is a very rudimentary
����������
��
���
���

	
���

��
���
��������
��
��
���

embedded application is capable of running even if the

�����
���

	
���
�

��������
&�
����
��
	��

�����
�������

the embedded system from sudden power offs while writing
��
���
���

	
����
��
��

�����

Linking your embedded application
Try to link your embedded application with static libraries
(lib*.a), not with shared libraries (lib*.so). You can do it
��
	��
#����
	���
�����������
�

*�
�
���
���

���	
�����!
thread) process. Linking the application with the static
libraries provides a smaller memory and disk footprint of
the embedded system, because only the really used library
functions are added.

The static linking is ineffective or impossible if you have
to use functions such as system(), popen(), fork(), and so on.
You'll have to copy some shared libraries into your initrd. The
ldd command will tell you which ones.

I had started with a statically linked embedded application
but later developments forced me to use the shared libraries.

Choosing a bootloader
���

������

��
���
���

	
���
	��
����
��
�
�
���
	���

embedded disk. As I have ext
���

	
���

��
�	
��������

disk, I've chosen the extlinux branch of the syslinux
package by Peter Anvin (www.syslinux.org). It supports

�%����
���

	
���

���������
ext2, ext3 and ext4. Read the
documentation and install it. If you don't like looking at

Peter Anvin's copyright sign during the boot process, you can
display a nice boot picture of your own.

Creating and populating your initrd
There are some special tools for making an initrd, but they are
���
�
����
�����
+�����
�
���
��
�����������

�-��
�

�����#
0

dd if=/dev/zero of=initrd.img bs=$SIZE count=1

…where $SIZE should be just big enough to accommodate
���
���

���
����������

��
���
initrd
���

	
����
���1

���%���

initrd.img
����
�
���

	
����
�

�����#
0

mke2fs -F -m 0 -N 100 initrd.img

and mount it to a local directory:

mkdir ./mnt; mount -t ext2 -o loop initrd.img ./mnt

Now, you can make the necessary directories using
commands like:

mkdir ./mnt/dev

You'll probably need other directories. This would depend
on the organisation of your application and on the other
programs your application is going to run. If you plan to
mount your embedded disk partitions, add mount points. Use
the mknod command to make device nodes for devices your
application needs; for example:

mknod ./mnt/dev/sda b 8 0

mknod ./mnt/dev/ram0 b 1 0

Here, /dev/ram0 is the root device. Copy your embedded
application ($PROGRAM) as ‘linuxrc’ to the initrd:

cp -p $PROGRAM ./mnt/linuxrc

If you use shared libraries and/or other programs, copy
them, too. Finally, unmount the new initrd:

umount ./mnt

Now, you have got your initrd containing all the necessary
items in the initrd.img
����

Populating your embedded disk
Let us suppose that the embedded disk has the device node
/dev/sda and /dev/sda1
�

��

��
�
���
��������
����������

+�����
�
���

	
���
��
���
���������
���
�����
���
�

�����#
0

mke2fs -m 0 -N 200 /dev/sda1

DevelopersLet's Try

OCTOBER 2013 | 43

tune2fs -c 0 -i 0 /dev/sda1

mount -t ext2 /dev/sda1 ./mnt

Set the master boot record on your embedded disk as
shown below:

cat /usr/share/syslinux/mbr.bin > /dev/sda

The mbr.bin
���
�

�
����
��
���
232�4567

���#���

package mentioned above. Copy your embedded kernel, initrd
and extlinux.conf
���
0

cp bzImage ./mnt/bzImage

cp initrd.img ./mnt/initrd.img

cp extlinux.conf ./mnt/extlinux.conf

The extlinux.conf
���
�

�
����
���
���

�����
�������

something like:

default linux

label linux

 display boot_picture

 kernel bzImage

 append initrd=initrd.img ramdisk_size=40000 root=/dev/

ram0 init=/linuxrc

You will probably need more append parameters to
treat your peripherals. If there are some files belonging
to the embedded application that you have decided to put
outside the initrd, copy them to the embedded disk, too.
Now, run the following command:

extlinux -i ./mnt

4�
#���
��
����
���
232�4567
����
������
��
	���

embedded disk. Unmount the ./mnt directory. Now, you
can boot from the embedded disk. The procedure described
above will start your embedded application at the end of
the boot process.

By: Pavel Andris

The author has been writing hard real-time embedded software

for various machines since 1981. He works at the Institute of

Informatics, Bratislava, Slovakia. E-mail: Pavel.Andris@savba.sk.

This publication is the result of the project: "Robust sensory system

for industrial environments with high pressures, temperatures

and high degree of electromagnetic interference", ITMS code

26240220037, supported by the Research & Development

Operational Program funded by the ERDF (European Regional

Development Fund) that supports research activities in Slovakia.

The project is co-financed by the EU resources.

Acknowledgement

