

CT Brain Perfusion Studies

David Rodríguez González
Pedro Santiago del Río
Instituto de Física de Cantabria (UC-CSIC)
Enrique Marco de Lucas
Hospital Universitario Marqués de Valdecilla

EGEE Industry Day, Bratislava, Slovakia, 19 September 2007

Outline

- Motivation
- Infarct location
- Perfusion and hemodynamical maps
- Int.eu.grid integration
- Future Work

Introduction

- □ Collaboration between IFCA (CSIC-UC) and Hospital Universitario Marqués de Valdecilla at Santander (HUMV) radiologists.
 - Previous collaboration
- Development of a tool for assisted diagnosis for brain stroke using hemodynamic parameters maps
- Vendor independent parameters calculation testing several methods
- Integration in int.eu.grid

Brain Stroke

- Brain stroke is one of the most important death and disability causes in the EU and USA.
- Currently available treatments could help to reduce the extension of the problem
 - ► CT Perfusion techniques can help using the acquired images to generate brain maps showing relevant hemodynamical parameters:
 - MTT Mean Transition Time
 - BV Blood Volume
 - BF Blood Flow
 - ▶ But need accurate identification of the ischemic lession
- Other relevant information for diagnosis is needed: like angiography

Area of brain deprived of blood

WHAT'S STROKE?

STROKE

- One million strokes occurring per year in the European Union.
- NINDS trial demonstrated usefulness of thrombolytic treatment of stroke in selected patients rescuing the ischemic penumbra.
- □ Thrombolytic treatment has an associated risk of cerebral hemorrhage up to 20%.

Area of brain deprived of blood

WHAT'S STROKE?

- Core: part of the ischemic region that is irreversibly injured
- Penumbra: area of the brain underperfused and in danger of infarcting.

STROKE

- □ CT perfusion plays a major role by demonstrating salvageable brain tissue and extension of cerebral core infarction.
- □ And... WHAT'S CT PERFUSION??

■ int.ev.grid

ANALYSIS

- Attenuation proportional to blood (= contrast) in brain tissue.
- Time attenuation curve of reference:
 - -artery (ACA, MCA)
 - -vein

Deconvolution (MTT)

Parametric maps

CBV = AUC pixel parench/ AUC pixel artery

MAIN CLINICAL APPLICATIONS

- **Vascular pathology**
 - Acute ischemic stroke
 - Chronic ischemia
 - Vasoespasm
- Brain tumours

¿salvageable cerebral tissue??

Infarct location application

- □ Using the cerebral blood flow and the mean transit time generate a brain map showing:
 - ▶ The infarct core
 - ▶ The ischemic penumbra
- Implemented in Java (ij library for the images)
 - Using input from GE Perfusion application
 - Will use also our maps when finished
- □ The program fed with the parameter maps automatically calculates an output map
 - ► The medic can change the criteria
 - Also can define a good tissue region to use as reference

Infarct location

CT Perfusion

- □ For DCE (Dynamic Contrast Enhancement) imaging using CT (aka CT Perfusion) a sequence of images (45) at the same location are taken in a given interval.
 - Concertation Time Curves
- □ The objective is to get the three parameters that are related by the central volume principle
 - ► This is done voxel by voxel

CT Perfusion Application

- Input: (4*) 45 CT brain images in DICOM format
 - ▶ Using as reference an artery and a vein three parameters are computed for each pixel:
 - blood flow (CBF),
 - blood volume (CBV) and
 - mean transition time (MTT).
- Prototype in Matlab
 - ▶ Using RegTools Toolbox by P.C. Hansen
- Now implementing the algorithms in
 - ► ANSI C
 - Java

Deconvolution Problem

$$C_{tiss}(t) = F \int_0^t C_{art}(t) R(t - \tau) d\tau$$
$$C_{tiss}(t) = F \left[C_{art}(t) * R(t) \right]$$

- We want to obtain F and R(t)
- C_{tiss} and C_{art} are the tissue and artery concentrations
- R(t) is the tissue residue function and it is used to calculate the MTT
- Numerical deconvolution process is very sensitive to noise in the measured data
 - Inherently ill-conditioned problem

If using Fourier Transform

$$C_{tiss}(w) = C_{art}(w)R(w)$$

$$R(w) = C_{tiss}(w) / C_{art}(w)$$

Singular Value Decomposition

- Discretize the convolution integral equation
 - System of linear equations
- □ A is a nxn matriz and x and b are vectors
- Singular ValueDecomposition (SVD)

$$A \cdot x = b$$

$$x_i = F \cdot R(t_i)$$

$$A = U \cdot S \cdot V^T = \sum_{i=1}^n u_i s_i v_i^T$$

$$s_1 \ge s_2 \ge \ldots \ge s_n \ge 0$$

Regularization Methods

■ TSVD

- Singular Value Decomposition (SVD)
 - Threshold or truncation index
 - The smaller singular values are eliminated
 - Limits the effects of noise
- C implementation using SVDLibC
- ► Java using JAMA
- □ Tikhonov Regularization
 - Prototype in Matlab
 - ▶ Java using JAMA

Selection of the regularization parameter

- Picard plots to estimate
- Currently using the L-Curve method

Interactive European Grid Project

Project acronym int.eu.grid

Contract number 031857

Instrument

Duration 2 years may '06april '08 Interactive: because researchers need answers in seconds, not in hours.

Grid: easy, intuitive, transparent BUT distributed, powerful, open.

For e-Science: Collaboration.

"providing transparently the researcher's desktop with the power of a supercomputer, using distributed resources"

http://www.interactive-grid.eu

Coordinator: CSIC, Jesús Marco, IFCA, Santander, SPAIN [marco@ifca.unican.es]

EMAZA SEN I F (A solution translation			F	A	CYFEODE			//) CESCA	Z	icm	Ьi fi	н∟ ग∫5 இ
CSIC-IFCA	LIP	PSNC	FZK	UAB	CYFRONE T	GUP	TCD	CESGA	II SAS	ICM	BIFI	HLRS
Coord - Spain	Portugal	Poland	Germany	Spain	Poland	Austria	Ireland	Spain	Slovakia	Poland	Spain	Germany

Distributed Parallel (MPI)
 Interactive Computing and
 Storage at the Tera level

- User Friendly Access through a Grid Interactive Desktop with powerful visualization and real simulation steering in real time
- Supporting Virtual Organizations at all levels: setup, collaborative environment, grid enhancement of applications, execution and monitoring tools.

Migrating Desktop

- Single sign-on / authorisation
- Platform independent
- Batch jobs
- MPI jobs
- Running interactive applications using java plugins or VNC
- Monitoring grid applications
- Flexible Application framework
- User profile management
- Easy application add on
- Local and grid file management

- Job Wizard
- Job Monitor
- □ Application Container and Plugin EGEE ID. Bratislava 19/09/2007

- GridFTP Commander
- User Profile Manager
- Private Storage
- Management
 - VNC/SSH console

Interactivity

Integration in int.eu.grid

- The TSVD is already running in int.eu.grid
 - ▶ Working on Tikhonov regularization
- The infarct location Java application would be included in a MD visualization plugin that:
 - ▶ Use DICOM images already at int.eu.grid SEs or register new ones (with anonymization)
 - ► Would run the brain parameters map creation application using TSVD or Tikhonov
 - ► Using them would create the core and penumbra map.

Other Future Work

- Implementing alternative techniques for getting the perfusion and hemodynamic parameters:
 - Frequencies filtering
 - Parametrical approaches
 - Bayesian
- Comparing all these techniques with simulated and real data
 - Using Monte Carlo simulations to check the methods robustness against different levels of SNR
- Adapting the application for other medical uses of CT perfusion:
 - ▶ Brain tumors

