

Enabling Grids for E-sciencE

WISDOM, a grid enabled virtual screening initiative

Yannick Legré
LPC Clermont-Ferrand, France (CNRS/IN2P3)

On behalf of the WISDOM Collaboration

Visit us on EGEE booth

www.eu-egee.org

Searching for new drugs

- Drug development is a long (10-12 years) and expensive (~800 MDollars) process
- In silico drug discovery opens new perspectives to speed it up and reduce its cost

Target discovery

Lead discovery

Target Identification and validation

- 2/5 years
- 30% success rate

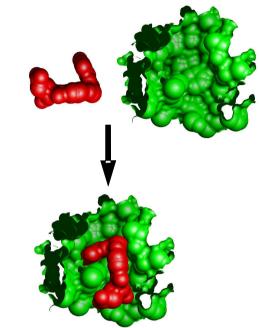
Lead identification

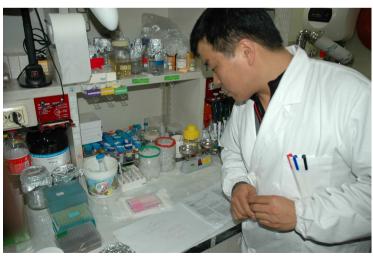
- 0.5 year

Lead optimization

- 2/4 years
- 65% success rate 55% success rate

Gene expression analysis, Target function prediction, Target structure prediction

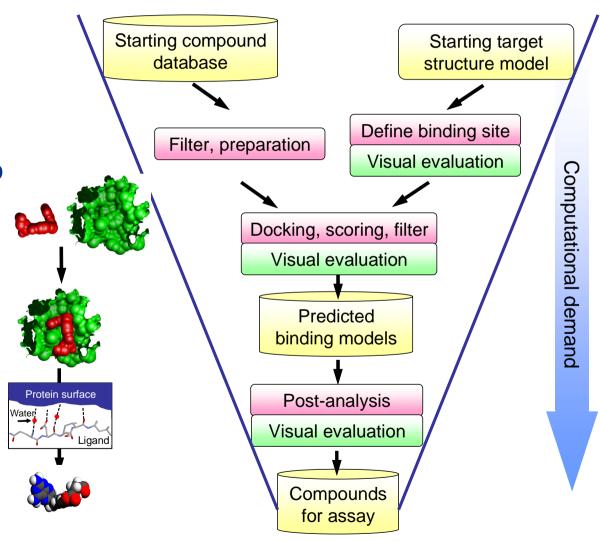

De novo design, Virtual screening Virtual screening, **QSAR**



Simplified principle of screening

Enabling Grids for E-science

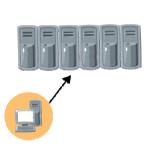
- Biologists isolate a protein, the target, which plays an important role in the life cycle
 - of the malaria parasite
 - of the H5N1 virus
 - of a cancer cell
 - **–** ...
- The objective is to find other molecules which will block the action of that protein: the hits
 - Docking of the molecule on the protein active site
- in silico docking vs in vitro docking
 - In silico: calculation of the binding energy between molecules
 - In vitro: measurement of the chemical reaction coefficient

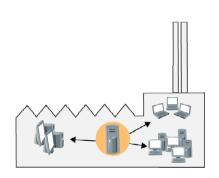


A first step towards in silico drug discovery: virtual screening

- In silico virtual screening
 - Starting from millions of compounds, select a handful of compounds for in vitro testing
 - Very computationally intensive but potentially much cheaper than in vitro testing
- Where to find CPUs to make it time effective ?

Distributed Computing in a nutshell


Enabling Grids for E-sciencE


Cluster

Enterprise Grids

Volunteer Computing

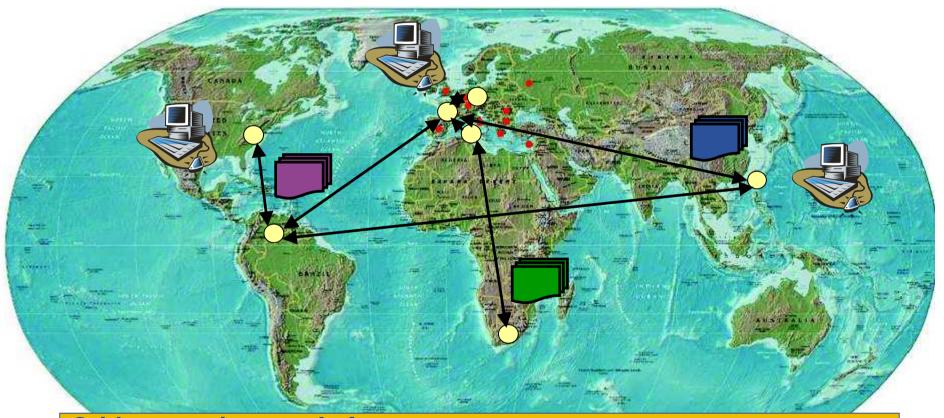
'The Grid' (in this talk!)

Example: United Devices

Example:
World Community Grid
Africa@home

Example: EGEE

What is the Grid?


- The World Wide Web provides seamless access to information that is stored in many millions of different geographical locations
- In contrast, the Grid is a new computing infrastructure which provides seamless access to computing power, data and other resources distributed over the globe
- The name Grid is chosen by analogy with the electric power grid: plug-in to computing power without worrying where it comes from, like a toaster

The grid added value for international collaboration

Grids offer unprecedented opportunities for sharing information and resources world-wide

Grids are unique tools for:

- -Collecting and sharing information (Epidemiology, Genomics)
- -Networking experts
- **-Mobilizing resources routinely or in emergency (drug discovery)**

The EGEE-II project

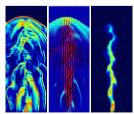
Enabling Grids for E-sciencE

EGEE

- 1 April 2004 31 March 2006
- 71 partners in 27 countries, federated in regional Grids

EGEE-II

- 1 April 2006 31 March 2008
- 91 partners in 32 countries
- 13 Federations


Objectives

- Large-scale, production-quality infrastructure for e-Science
- Attracting new resources and users from industry as well as science
- Maintain and further improve "gLite" Grid middleware

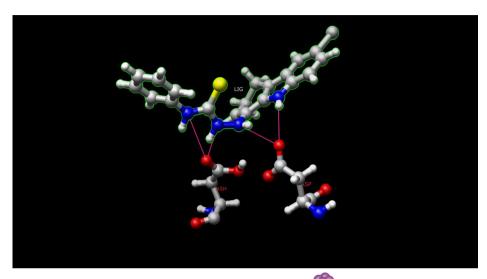


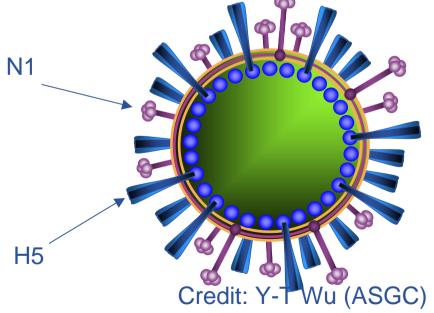
Applications on EGEE

Enabling Grids for E-sciencE

- More than 25 applications from 9 domains
 - Astrophysics
 - MAGIC, Planck
 - Computational Chemistry
 - Earth Sciences
 - Earth Observation, Solid Earth Physics, Hydrology, Climate
 - Financial Simulation
 - E-GRID
 - Fusion
 - Geophysics
 - EGEODE
 - High Energy Physics
 - 4 LHC experiments (ALICE, ATLAS, CMS, LHCb)
 - BaBar, CDF, DØ, ZEUS
 - Multimedia
 - Life Sciences
 - Bioinformatics (Drug Discovery, GPS@, Xmipp_MLrefine, etc.)
 - Medical imaging (GATE, CDSS, gPTM3D, SiMRI 3D, etc.)

- WISDOM stands for World-wide In Silico Docking On Malaria
- Goal: find new drugs for neglected and emerging diseases
 - Neglected diseases lack R&D
 - Emerging diseases require very rapid response time
- Method: grid-enabled virtual docking
 - Cheaper than in vitro tests
 - Faster than in vitro tests


Biological objectives


Malaria: Find active molecules

- on a known mutated protein (DHFR)
- on new targets:
 - Plasmepsins
 - GST
 - Tubulin

Avian Flu

- Study the impact of point mutations of the N1 enzyme
 - Tamiflu active on N1
- Find new molecules active on N1

Grid-enabled virtual docking

Enabling Grids for E-sciencE

Millions of potential drugs to test against interesting proteins!

High Through Land Screening

Too costly for neglected disease!

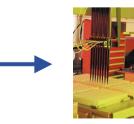
Compounds:

ZINC: 4.3M

Chembridge: 500 000

Molecular docking (FlexX, Autodock) ~1 to 15 minutes

Targets:


PDB: 3D structures

Data challenge on **EGEE** ~ 2 to 30 days on ~5000 computers

Cheap and fast!

Selection of the best hits

Hits screening using assays performed on living cells

Clinical testing

Drug

Leads

Production Environment

Enabling Grids for E-sciencE Credit: Jean Salzemann WISDOM Client Web Portal AMGA client SECURITY INTEROPERABILITY And INTERACTIVITY Web Service AMGA client **AMGA** Middleware API **PORTABILITY** Results Database Grid User Interface Resource Broker Monitoring Database Computing Element Storage Element AMGA client

Statistics of deployment

Enabling Grids for E-sciencE

- First Data Challenge: July 1st August 15th 2005
 - Target: malaria
 - 80 CPU years
 - 1 TB of data produced
 - 1700 CPUs used in parallel
 - 1st large scale docking deployment world-wide on a e-infrastructure
- Second Data Challenge: April 15th June 30th 2006
 - Target: avian flu
 - 100 CPU years
 - 800 GB of data produced
 - 1700 CPUs used in parallel
 - Collaboration initiated on March 1st: deployment preparation achieved in 45 days
- Third Data Challenge: October 1st 15th December 2006
 - Target: malaria
 - 400 CPU years
 - 1,6 TB of data produced
 - Up to 5000 CPUs used in parallel
 - Very high docking throughput: > 100.000 compounds per hour

Post docking analysis on Avian Flu

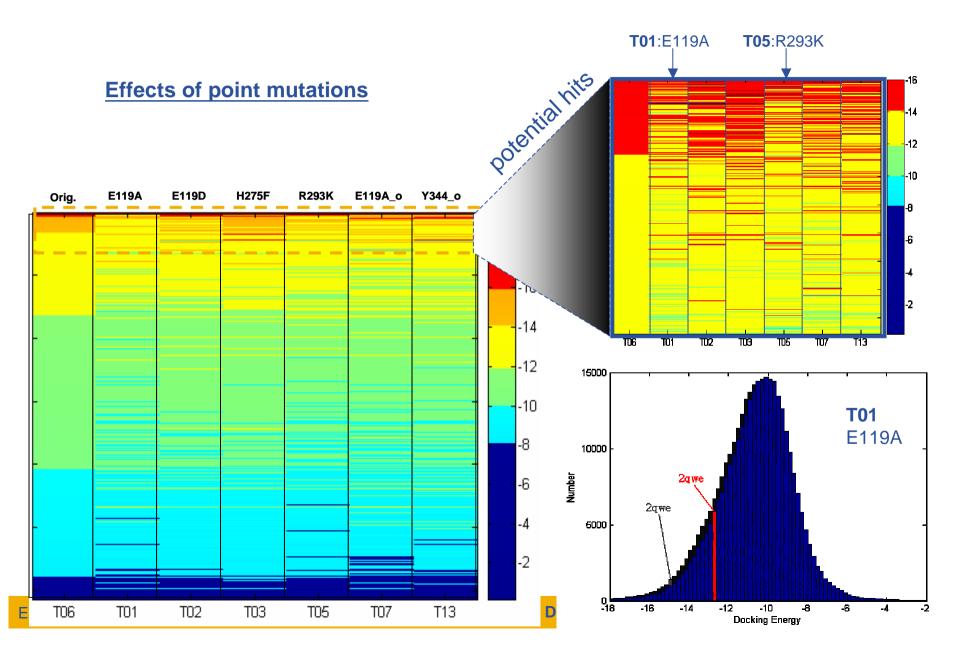
Enabling Grids for E-science

- Selection of the most promising molecules in a 2step process
 - 1st step: rejection of 85% based on docking score.
 - 2nd step: re-ranking of the remaining 15% and selection of the best 5%
- 6 known active inhibitors included in the analyse to validate the process
 - 5 out of 6 kept in the 2250 selected compounds

Global effectiveness:

(Hits_{sampled}/N_{sampled})/(Hits_{total}/N_{total}) Pearlman & Charifson, JMC, 2001

Pre-sceening (AUTODOCK) over collection and sample first 15% EF1


= (5/6)/15% = 5.5

Re-ranking (SDDB) first 15% and sample first 5% $EF^2 = (5/6)/(5\%*15\%) = 111$

Credit: Y-T Wu (ASGC)

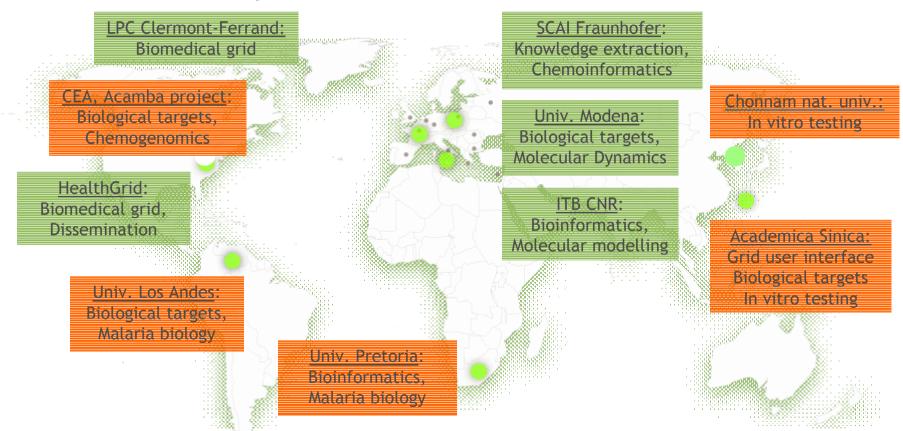
Significant impact of mutations on the activity of molecules Enabling Grids for E-science

Status of in vitro tests

Avian Flu

- Initial number of compounds:300.000
- 123 compounds bought and tested out of the 2250 selected
 - 7 out of 123, approximately 6%, are active
- Usual average success rate for in vitro tests: 0,1%
- Factor 60 increase to be confirmed on more compounds
- Tests under way at Chonnam National University (ROK)

Malaria


- Initial number of compounds: 500.000 (WISDOM-I)
- Selection of 30 molecules in 2 steps
 - 1000 molecules selected on docking score
 - Selection of 30 molecules through molecular dynamics
- Tests under way at Chonnam National University (ROK)
- First results are very encouraging

Grid added value for in silico drug discovery

Enabling Grids for E-sciencE

- The grid provides the centuries of CPU cycles required for virtual screening
- The grid provides the reliable and secure data management services to store and replicate the biochemical inputs and outputs
- The grid offers a collaborative environment for the sharing of data in the research community on Avian Flu and Malaria

Industrial perspective

- A secure and reliable production environment was developed for Wisdom
 - Up to 100.000 docked compounds per hour (WISDOM-II)
 - Distributed Secured Data Management
- This environment has been used for other life sciences applications (e.g. PDB refinement within the EMBRACE project - CMBI)
- We are ready to address industrial requirements!

Visit us on EGEE booth

Credits

Academia Sinica

BioSolvelT

CNR-ITB

CNRS

CEA

Chonnam National University

HealthGrid

IN2P3

LPC

SCAI Fraunhofer

Università di Modena e Reggio Emilia

Université Blaise Pascal

University of Pretoria

University of Los Andes

Auvergrid
Accamba
BioInfoGRID
EELA
EGEE
EMBRACE
EUChinaGRID
EUMedGRID
SHARE

TWGrid

Conseil Regional d'Auvergne European Union

