

Empowering Grids – the EGEE gLite middleware

Ludek Matyska

CESNET and Masaryk University

Czech Republic

Disclaimer

- This presentation is based on contribution from many gLite developers
- It uses pictures, numbers and sometime even whole slides from many other EGEE related presentations given at different fora
- Even if not explicitly referenced, all these information sources are highly appreciated

Thanks to the whole JRA1 team

EGEE Projects

Pre-history

- DataGrid, focused on the initial middleware development (EDG)
- 3 years, from 2001 to March 2004

EGEE

- Production oriented, based on middleware development in DataGrid, EDG, LCG and initial gLite middleware
- 2 years, April 2004 to March 2006
- 71 partners, 27 countries, operation federated (ROCs)

EGEE II

- Full scale deployment, the gLite middleware
- 2 years, April 2006 to March 2008
- 91 partnes, 32 countries, 13 Federations

EGEE Future

EGEE III

- Just to be submitted (September 20th)
- 94 partners, 34 countries, 12 federations
- Real production (LHC deployment in 2008)
- Strong support for other applications
 - Computational Chemistry
 - Astrophysics
 - Bioinformatics and medicine
 - Earth Sciences
 - (Grid Observatory)
- Continued middleware development and support

EGI (European Grid Initiative)

- Post EGEE future
- Design Study project (Started September 1st)

EGEE Mission

Large-scale production quality e-infrastructure

- HEP the main user
- But other communities actively looked for and supported

High-throughput production environment

- Emphasis on large number of CPUs, sites, and independently submitted and run jobs
- Goals: Tens to hundreds thousands jobs per day on the whole infrastructure

Data intensive (data Grid)

- Able to process PB of data
- Data catalogues, access methods, ...
- Low, medium and high security requirements

Scale of EGEE Service

Enabling Grids for E-sciencE

EGEE Middleware

- Brand name: gLite
- Production quality
 - Novelty less important
 - Must pass the real-use test
- Testing and Integration
 - Independent activity
 - Stay between development and operations
- Foundation Services
- Higher Level Grid services

- Security infrastructure
- Information system, monitoring and accounting
 - Information schema, simple resource discovery
 - Resource monitoring and notification interfaces
 - Accounting to provide appropriate aggregation and views
- Compute Element (CE)
 - Set of services to provide homogeneous secure access to heterogeneous computing resources
- Storage Element (SE)
 - Set of services to provide access to storage resources
 - SRM Interface
 - POSIX like I/O

Higher level Grid services

Enabling Grids for E-science

Job services

- Workload Management System (WMS)
 - Resource brokerage
 - Job Input and Output handling
 - Automatic resubmission and persistence
 - Job tracking Logging and Bookkeeping service
 - Permanent job information Job Provenance service

Data management services

- Reliable asynchronous file transfer system
- File and replica catalogues
- Secure data management
- Data encryption

gLite evolution

EDG middleware

- DataGrid project
- Maintained by the LHC Computing Grid LCG middleware
- LCG releases up to 2.7 (2005)

gLite middleware

- EGEE projects
- Overlap with the LCG, but independent up to version 1.5 (2005)

gLite middleware 3.0

- Merge of gLite 1.5 and LCG 2.7 (2006)
- Production release in EGEE project

gLite 3.1

Increased stability and throughput, released

gLite services

- Security
 - Authentication
 - Authorization
 - Accounting
- Computing Element
- Storage Element
- Information and Monitoring
- Workload Management
 - Brokerage
 - Logging and Bookkeeping and Job Provenance
- Data Management
 - File transfers, Catalogues, Replicas

gLite services – diagram

Enabling Grids for E-sciencE Access **CLI** API **Security Information & Monitoring** Authorization **Application** Information & Auditing Monitoring Monitoring Authentication **Data Management Workload Management** Metadata File & Replica Job Package Accounting Catalog Catalog Manager Provenance Storage Data Workload Computing Site Proxy Element Movement Element Management

Overview paper http://doc.cern.ch//archive/electronic/egee/tr/egee-tr-2006-001.pdf

Authentication

- PKI with X.509 certificates providing single sign-on
- Maintained list of trusted CA (EUGridPMA, IGTF)
- Use of short term proxy credentials (lower risk)
 - Proxy delegation, MyProxy,

Authorization

- Virtual Organizations (VO)
 - User must be member of at least one VO
- Resources are "assigned" to VOs (negotiation, includes priorities, access policies, etc.)
- VOMS (VO Management Service)
 - Attribute certificates, capability based authorization
 - "Attached" to proxy certificate
 - Authorization information stored in VOMS servers

Security - overview

Enabling Grids for E-sciencE

Coming: Shibboleth SLCS

Enabling Grids for E-sciencE

Long lived certificates may be replaced by short lived certificates provided by a Shibboleth identity Provider

Computing Element

- Abstraction of a computational resource
 - Common set of interfaces/services for heterogeneous resources
- Cluster a typical CE
 - Head node
 - Several worker nodes (WN)
 - Single (local) batch system to dispatch jobs among WNs
- Different realizations (interfaces)
 - LCG-CE
 - gLite-CE
 - CREAM

LCG-CE

- Globus Toolkit version 2 GRAM service
- Never ported to GT4
- Deprecated

gLite-CE

- GSI-enabled Condor-C
- Still needs some tuning
- Phased out

CREAM

- WS-I interface (OGF-BES)
- BLAH (Batch Local Ascii Helper) connector
 - Job management operations
 - Job status changes

Computing resource access

Enabling Grids for E-sciencE

non-gLite component

User / Resource

In production

Existing prototype

_ _ _

Possible development

WMS Components

Enabling Grids for E-sciencE

Workload management system

Enabling Grids for E-science

- Resource brokering
 - Matchmaking: user requirements vs. grid state
 - CE selection
- Workflow management
 - Compound jobs
- I/O management
 - Takes into consideration also data resources
- Additional features
 - Persistency
 - Deep and shallow resubmission
 - Recovery from WMS crashes
 - Security
 - Proxy renewal

Supported job types

- "Normal" (batch like)
- DAG workflow
- Collection
- Parametric
- MPI
- Interactive
- Deprecated
 - Checkpointable
 - Partitionable

Real time job tracking

Logging and Bookkeeping Service

- Keep track of Grid jobs across components
 - Reliable and secure collection of events (non-blocking)
 - Multiple event sources (redundancy)
- Capture job control flow
- Provide job state information
 - Job state updated on new event arrival
- Support user generated events
- Secure
 - Mutual authentication of all components
 - Encrypted data transmission
 - VOMS based authorization
- All data collected on LB server
 - Multiple instances (one job one LB server)

Job Provenance

Long term preservation of information about Grid jobs

- Information on job control flow and execution environment complements actual job results
- Based on data from LB, extended by input and sandbox, small output files, additional user annotations
- Architecture optimized for storage AND retrieval
 - JP Primary Server
 - One for several VO
 - Huge amount of raw data
 - Fast write
 - JP Index Servers
 - Many instances per JP PS (registration, support for >1 PS)
 - Provide "views" on data
 - Support for data-mining
- Assist job re-submission

Job tracking architecture

Enabling Grids for E-sciencE

JP Architecture

JP Primary Storage **Primary Storage** JP Index JP Index Server feed front-end Server Get Lookup Retrieve raw files Primary Storage Get files JP Client back-end

Accounting

- Collection of data on resource usage
 - By VO, group or a single user
- Metering sensors on all resources
- Pricing cost of use of resources
 - If enabled, market-based resource brokering
- High privacy
 - Access to data granted to authorized personnel
 - Information collected in GOC (Grid Operation Centre)
- Functionality provided by APEL
 - Uses R-GMA to propagate job accounting information for infrastructure monitoring
- Full support via DGAS
 - Complex architecture (site and central databases)
 - Used by INFN, gLite certification pending

Data Management overview

Enabling Grids for E-sciencE

Storage element

- Abstraction of file storage
- Interface: SRM (Storage Resource Management)
 - Current version 2.2
- Handles authorization
- Various implementations
 - Disk based: DPM, dCache
 - Tape based: Castor, dCache
- POSIX like I/O (rfio)
 - GFAL (Grid File Access Layer)

Disk Pool Manager (DPM)

Enabling Grids for E-science

- Manages storage on disk servers
- SRM support
 - **1.1**
 - 2.1 (for backward compatibility)
 - 2.2 (released in DPM version 1.6.3)
- GSI security
- ACLs
- VOMS support
- Targets small to medium sites
 - Single disks or several disk servers

- LCG File catalogue
- Stores mapping between
 - Users' file names
 - File locations on the Grid
- Provides
 - Hierarchical Namespace
 - GSI security
 - Permissions and ownership
 - ACLs (based on VOMS)
 - Virtual ids
 - Each user is mapped to (uid, gid)
 - VOMS support
 - To each VOMS group/role corresponds a virtual gid

File Transfer Service (FTS)

Enabling Grids for E-science

- Reliable data movement fabric service
 - Performs bulk file transfers between multiple sites
 - Transfers are made between any SRM-compliant storage elements (both SRM 1.1 and 2.2 supported)
- It is a multi-VO service
 - Balance usage of site resources according to the SLAs agreed between a site and the VOs it supports
- VOMS aware
- Secure
 - All data is transferred securely using delegated credentials with SRM / gridFTP
 - Service audits all user / admin operations
- Deployment
 - Tier 0 at CERN (target 1GB/s 24/7 service)
 - Among ~10 Tier 1 centers and also Tier 1 Tier 2 transfers

Encrypted data storage

- Request from medical community
- Strong security requirements
 - anonymity (patient data is separate)
 - fine grained access control (only selected individuals)
 - privacy (even storage administrator cannot read data)
- Solution based on many components:
 - image ID is located by AMGA (metadata management)
 - key is retrieved from the Hydra key servers
 - file is accessed by SRM (access control in DPM)
 - data is read and decrypted block-by-block in memory only (GFAL and hydra-cli)

Some statistics

- Stress tests performed by the HEP experiments
 - ATLAS and CMS
- gLite 3 with "standard" testing and certification procedure
 - Results not satisfactory for end users
- gLite 3.1
 - Closed loop between developers and users
 - Intensive work on started in 2007
 - Visible improvements

Requirements for the gLite WMS

Enabling Grids for E-sciencE

	CMS	ATLAS
<u>Performance</u>		
2007	50K jobs/day	20K production jobs/day + analysis load
2008	200K jobs/day (120K to EGEE, 80K to OSG)	100K jobs/day through the WMS;
	Using <10 WMS entry points	Using <10 WMS entry points
<u>Stability</u>		
		<1 restart of WMS or LB every month under load

WLCG acceptance criteria

Enabling Grids for E-science

- Based on the experiment requirements, some criteria have been defined to decide if the gLite WMS satisfies the requirements
 - At least 10000 jobs/day submitted for at least five days
 - No service restart required for any WMS component
 - The WMS performance should not show any degradation during this period
 - The number of zombie jobs should be less than 0.5% of the total

Results of the acceptance test

Enabling Grids for E-sciencE

- 115000 jobs submitted in 7 days
 - ~16000 jobs/day well exceeding acceptance criteria
 - The "limiter" prevented submission when load was very high (>12)
- All jobs were processed normally but for 320
 - ~0.3% of jobs with problems, well below the required threshold
 - Recoverable using a proper command by the user

- The WMS dispatched jobs to computing elements with no noticeable delay
- Acceptance tests were passed

Number of Jobs Error Breakdown: January to August 2007

gLite WMS: ~22% Data Management: 36% ATLAS SW: 8%

Number of Jobs Error Breakdown: July and August 2007

Enabling Grids for E-sciencE

gLite WMS: ~13% Data Management: 47% ATLAS SW: 11%

gLite WMS category includes also site specific issues and problematic job distribution (with subsequent proxy expiration).

WallClockTime Error Breakdown: January to August 2007

Enabling Grids for E-sciencE

gLite WMS: negligible Data Management: ~60% ATLAS SW: 28%

The WMS in CMS data analysis

Enabling Grids for E-sciencE

- CMS supports submission of analysis jobs via WMS
 - Using two WMS instances at CERN with the latest certified release
 - For CSA07 the goal is to submit at least 50000 jobs/day via WMS
 - The Job Robot (a load generator simulating analysis jobs) is successfully submitting more than 20000 jobs/day to two WMS

Success rate

Number of Successful Jobs
 Number of Failed Jobs

Summary

- gLite middleware reached production quality
 - Large scale deployment on an EGEE Grid
 - Hundreds of sites, tens thousands jobs every day
 - Scalability limits much higher
 - Multiple deployment of key services possible
 - File transfers at PB level already achieved (over half a year)
- On-going performance tuning
 - Closer collaboration between users and developers beneficial to fast development of high performing components
 - Experimental services approach
- On-going reliability improvements
- Ready for use new users welcome